segunda-feira, 22 de outubro de 2012

Os números Gregos

Hoje, a Grécia é um dos países menos desenvolvidos da Europa e com menos expressão, mas foi este país é conhecido como o berço de nascimento da democracia e de importantes princípios matemáticos, como o Teorema de Pitágoras. A Grécia do período de 1.100 a.C. até 146 a.C. é conhecida como a Grécia Antiga, seu território era mais extenso abrangia outras áreas como o Chipre, Anatólia, sul da Itália, da França e a costa do Mar Egeu e também assentamentos no litoral do Egito.
Nesta época, os gregos buscavam espaço para expandir sua agricultura, mas antes disso para fazer seus registros, eles criaram seu próprio sistema de numeração, conhecido como sistema acrofônico. Infelizmente, não existem muitas fontes que possam ser estudadas sobre a origem da matemática grega ou do seu sistema de numeração. O sistema acrofônico tinha como característica representar o número com a letra do primeiro nome do próprio número, baseando no princípio aditivo de base 10. A figura abaixo representa os 10 primeiros números e em seguida os números 5, 10, 100 e 1.000 (abaixo tem o nome dos números na escrita grega), respectivamente:


Este sistema acabou se tornando muito trabalhoso, pois quanto maior o número mais símbolos eram necessário para fazer sua representação e mais demorado era o processo de decifrar o número. Ao passar dos anos, mais precisamente nos tempos de Alexandria foi decidido implantar um novo sistema numérico, baseado no próprio alfabeto grego. O alfabeto grego possui 24 letras, mas para o sistema numérico foi acrescido mais três letras três letras do alfabeto fenício foram utilizadas como símbolos numerais. A figura abaixo mostra o sistema grego de números-letras, sendo que o número 6, 90 e 900 são do alfabeto fenício.


Neste novo sistema o problema estava em decifrar quando era número ou quando era letra, para sanar essa dificuldade os gregos decidiram acrescentar um “acento agudo” na parte superior direita do número e para representar a casa dos milhares era acrescido um “acento agudo” na parte inferior esquerda do número, segue abaixo o exemplo do número 163 e 62.786:


Existem provas arqueológicas que este sistema de numeração era ensinado nas escolas. O sistema grego não é posicional, o que pode ser um fator que dificultava quando era necessário fazer operações de soma e subtração, pois teriam que utilizar a ideia de equivalência de bases e também decorar de todos os 27 números, sendo que hoje temos somente 10 algarismos. O zero nesta época não era necessário ser expresso, pois ele representava nada, assim não era preciso ser representado por nenhuma letra.
Um elemento que facilitava era o registro do número, pois cada letra representava um número, por exemplo, para representar o 82 teria que colocar o símbolo do 80 e ao lado o símbolo do 2, sendo que esta é a forma como as crianças não alfabetizadas vem os números ou na maioria das vezes fazem o seu registro. Acreditasse que este sistema não se expandiu no mundo, pois a álgebra babilônica era muito forte e os demais países preferiram adquirir o sistema de numeração vindo do Oriente.

Referências:

Disponível em: <http://pt.wikipedia.org/wiki/Gr%C3%A9cia_Antiga>. Acesso em: 21 out. 2012.
Disponível em: <http://www.antigagrecia.com/sistema-numerico-grego/>. Acesso em: 22 out. 2012.
Disponível em: <http://www.educ.fc.ul.pt/icm/icm99/icm36/numeracao_grega.htm>. Acesso em: 20 out. 2012.
Disponível em: <http://www.laifi.com/laifi.php?id_laifi=1473&idC=28639#>. Acesso em: 22 out. 2012.

Nenhum comentário:

Postar um comentário